Learning Adaptive Multiscale Approximations to Data and Functions near Low-Dimensional Sets

Mauro Maggioni

Department of Mathematics, Electrical and Computer Engineering, and Computer Science, Duke University, Durham, N.C., U.S.A. *Email:* mauro.maggioni@duke.edu

In the setting where a data set in \mathbb{R}^D consists of samples from a probability measure ρ concentrated on or near an unknown *d*-dimensional set \mathcal{M} , with Dlarge but $d \ll D$, we consider two sets of problems: geometric approximation of \mathcal{M} and regression of a function f on \mathcal{M} . In the first case we construct multiscale low-dimensional empirical approximations of \mathcal{M} , which are adaptive even when \mathcal{M} has geometric regularity that may vary at different locations and scales, and give performance guarantees. In the second case we exploit these empirical approximations to construct multiscale approximations of fon \mathcal{M} , which adapt to the unknown regularity of f even when this varies at different scales and locations, and prove guarantees that show that we attain the same learning rates as if f was defined on a Euclidean domain of dimension d, instead of an unknown manifold \mathcal{M} . All algorithms have complexity $O(n \log n)$.